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Measurements of the effect of hydrostatic pressure on ultrasonic wave velocities have been 
used to determine the pressure derivatives of the elastic stiffness of uranium nitride at room 
temperature. ~C44/0P, and hence the GrL~neisen parameter for the transverse mode propagating 
down an <~00 1 ) axis, is negative; however, this mode softening is not anomalous for rocksalt 
structure crystals. The Gr~neisen gammas of the acoustic modes obtained in the long 
wavelength limit have a pronounced anisotropy which accrues largely from the presence or 
absence of contributions to modes of vibration from nearest-neighbour repulsive forces. The 
compression of uranium nitride calculated from the Murnaghan equation of state is much 
smaller than those of the alkali halides or IV-VI compounds because this compound is much 
stiffer. 

1. In troduct ion  
To examine the anharmonicity of  the long wavelength 
acoustic modes of  uraniun nitride (UN) the effect of  
hydrostatic pressure upon its elastic constants has 
been measured. UN is one of the group of  metallic 
uranium pnictide compounds which crystallize in the 
rocksalt structure. In the actinide metals and com- 
pounds both 6d and 5f electrons are involved in the 
chemical bond. Previously the elastic constants of  
UN have been measured as a function of  temperature 
down through the N6el point TN(=53K)  where 
marked anomalies occur, which have been interpreted 
in terms of  spin-phonon interactions [1, 2]. This 
investigation of  the elastic behaviour under the 
influence of hydrostatic pressure sheds further light on 
the difficult problem of the interatomic binding forces 
in uranium compounds. 

2. Exper imenta l  p r o c e d u r e s  
Ultrasonic wave velocity measurements were made on 
a single crystal specimen having a pair of  (1 1 0) faces 
polished flat and parallel to better than 10-4rad. 
Ultrasonic pulses of  fundamental frequency 10 MHz 
were generated and received in the single-ended 
technique by quartz transducers bonded to the crystal 
with Nonaq stop-cock grease. Pulse transit times were 
measured by the pulse echo overlap technique. The 
hydrostatic pressure dependences of the ultrasonic 
wave velocities were measured at pressures up to 
about 2 x 108 Pa in a piston and cylinder equipment 
using Plexol 201 as the pressure transmitting fluid. 

3. Exper imenta l  resu l t s  and d i s c u s s i o n  
The elastic constants obtained (Table I) are in reason- 

able agreement with those measured previously [1]. 
The second order elastic constants (SOEC) of U N are 
much greater than those of  the alkali halides (for NaC1 
C s, = 4.93, CiS2 = 1.30, C s = 1.28, c 'S[=�89 1 - 
CS2)] = 1.82, bulk modulus B0 s = 2.51 units of 
10 I~ Nm -2 [3]), the mixed covalent-ionic bonded lead 
and tin chalcogenide semiconductors (for PbTe C~ = 
10.53, cS2 = 0.70, C s = 1.322, C ' =  4.91, B s = 
3.976 in units of 101~ -2 [4]) or even for the rare- 
earth chalcogenide SINS, which like U N  contains a 
strong element of  d- and f-binding (Gl  = 12.7, 
C~2 = 1.2, C44 = 2.69, C' = 5.75, B0 s = 5.03 in units 
of 10 j~ Nm -2 [5]). Thus the interatomic binding forces 
in U N  are particularly strong. In common with that of 
other rocksalt structure crystals, CH, which includes a 
large contribution from the nearest-neighbour forces, 
is several times larger than C44. For  a more nearly 
ideally ionic crystal (such as NaC1) the forces are 
central so that the Cauchy relation (C~2 = C44) holds. 
The deviation, traditionally associated with covalency 
or a metal-like binding, from this relation is not par- 
ticularly large in the case of UN. The acoustic mode 
velocities, found by solution of  the Christoffel 
equations, are plotted as a function of  mode propa- 
gation direction in Fig. 1. 

The velocities of  the longitudinal and two shear 
modes that are polarized in the [0 0 1] and [1 i 0] direc- 
tions and propagated in the [t 1 0] direction were 
found to be linearly dependent upon the applied 
hydrostatic pressure (up to about 3 x 10SPa). The 
hydrostatic pressure derivatives of  the elastic stiffness 
constants C~j are given in Table II. These were cal- 
culated from the experimental data in the form of  
"natural"  velocities W [6], using 
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T A B L E  I The second order elastic stiffness constants  (SOEC) 

for U N  at 290 K. 

Density 00 (kg m-3)  14 333 
Lattice parameter  a 0 ( •  10 t~ 4.89 
Elastic stiffness constants  

CI1 (X 101~ 2) 42.39 
CI2 9.81 

C44 7.57 
C' [=�89 H - Ci2)] 16.29 

Anisotropy ratio C'/C44 2.15 
Bulk modulus  B s ( x  10 m N m  2) 20.67 
Volume compressibility Z s ( x 10-12 m 2 N - l  ) 4.82 
Linear compressibility ( x 10 m m 2 N - t  ) 1.61 

Elastic compliance constants  
Sll ( x  10 12m2N -1) 2.34 

SI2 - 0 . 7 2  
$44 1.32 

+ 0.06 
+ 0.09 
+ 0.02 
+ 0.01 

+ 0.08 
+ 0.02 

T A B L E  II  The hydrostatic pressure derivatives of  the SOEC 
and bulk modulus  of  U N  at room temperature (290K) and 
atmospheric pressure. 

OCulOP 9.97 + 0.11 
OCI21c~P 3.81 _ 0.14 
aC447c~P - ( 0 . 7 4  + 0.05) 
ac'/ap 3.08 + 0.25 
c~B/c?P 5.86 _+ 0.13 
B H 11.35 
BI2 2.90 
B44 0.33 
CII 1 -~- 2C112 --72.3 x lOl lNm 2 
Ci23 -{- 2Cil 2 - 5 3 . 9  X 1011Nm 2 
CI44 -1- 2C166 --2.4 x 1011Nm -2 
Debye temperature ~D l 282 K 
Mean Grfineisen parameter  7~ 0.71 
Thermal  Grfineisen parameter  7 th 1.98 

( aCu) Cu d 
--~-P-Jx.e=0 - c~ + 2c~2 + d-P (& W2)p=~ (1) 

where & is the density at atmospheric pressure. Also 
given in Table II are the hydrostatic pressure deriva- 
tives B u of the thermodynamic second order elastic 
stiffness. In general for the rocksalt structure alkali 
halides and IV-VI compounds the pressure derivatives 
(aCijlaP)T,e= o follow the trend acHlaP > c~c/aP > 
aci2/gP > ac44/sP (see Table III of [4]). For UN as 
for these other crystals with the same structure, 8C~1/c~P 
is by far the largest pressure derivative; this is because 
it is dominated by large contributions from nearest- 
neighbour repulsive terms and attractive terms includ- 
ing that from the Madelung energy. The normal trend 
is not followed in that aC~2/c?P > ac'/aP. However, 
in all the compounds including UN ac44/SP is by far 
the smallest pressure derivative; that ac44/aP is nega- 
tive for UN should not be viewed as anomalous - it 
is also negative for RbBr, KC1 and KBr (but positive 
for NaC1, NaF and LiF). This negative aC44/SP reflects 
the negative sign of the Grfineisen parameter of the 
transverse mode propagated in the [0 0 1] direction, 
which can be accounted for structurally (see later). 
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Figure 1 Acoustic mode velocity o f  U N  as a function of mode 
propagat ion direction. 
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Knowledge of the compression V(P)/Vo (the ratio of 
the volume V(P) to the volume V0 at atmospheric 
pressure) is central to theoretical studies of the physical 
properties of a crystal under pressure. To determine 
the effect of pressure on the volume, lattice parameter 
and nearest U-U distance, the Murnaghan [7] equation 
of state has been used in a logarithmic form 

ln(v@p))  = ~-~0sln 1] 

which describes the compression of many solids well 
[8]. Since ultrasonic measurements give adiabatic 
moduli, the data need to be transformed to the iso- 
thermal forms (Table III). Adiabatic B0 s and isothermal 
B0 s bulk moduli at temperature T are related by 

B s = B~(1  + aTthT) .  (3) 

Here 7 th (=  1.98 [9]) is the thermal Grfineisen par- 
ameter. The linear thermal expansion coefficient ~1 is 
given by [9] 

a I = 8.695 X 1 0 - 6 +  12.343 • 10 l ~  298) 
(4) 

so that the volume thermal expansion at 290 K is 
26.06 x 10 6 (Table III). Using these values, B~ has 
been obtained as 20.36 x 101~ -2. The tem- 
perature derivative (aB~/ctT)p of the isothermal bulk 
modulus had been obtained using [8, 10] 

cGT]. = \ a T i e  (1 -I- T~?) 

.oS(< > .  + + 

(5) 
from measurements of B s /T. The hydrostatic pressure 
derivative (aBSo/aP)T (=  B~ T) of the isothermal bulk 
modulus has then been calculated from [8, 10] 

8,o T = 8 ;  s + tms ) 

B [ I  2 1 < [ . o S ,  + 
L-  

(6) 



TAB LE I I I Primary thermodynamic data for UN at 290 K used for adiabatic (S) to isothermal (T) transformations 

Bulk modulus B s = 20.67 x 10mNm-2; 

aBg 
- - =  - -5 .47  x 107Nm 2K-E;  
a T  

8BS (= BD s) = 5.86; 
8P 

Volume thermal expansion coefficient ~ = 2.61 x 10 5K 

Thermal Grfineisen parameter 7 th = 1.98 [9] 

Bo x = 20.36 x 10;~ 2 

- 6.47 x 107Nm 2K 
c~T 

O B o  ~ 
8P (=B~ = 6.06 

6q~ 
i = 3.70 x 10 9 
aT 

The isothermal compression of  UN calculated using 
the Murnaghan [7] equation of  state (Equation 2) is 
plotted in Fig. 2. Previously the band structure and 
electronic pressure for UN have been computed in 
the lattice parameter range 4.75 • 10 -I~ to 4.90 x 
10-mm [11, 12]; using the compression obtained here, 
it is now possible to convert those results to the more 
experimentally direct effect of pressure on the uranium 
f and d, the nitrogen valence p electrons and the 
Madelung energy contributions to the band structure 
energy. In accord with its much stronger interatomic 
binding as evidenced by its much greater stiffness Cu, 
UN (AV/Vo = 1.84% at 40 x 10SPa) has a much 
smaller compression than either the alkali halides 
(AV/Vo = 1.8% at 40 x 10SPa for NaC1) or the 
mixed covalent-ionic lead chalcogenides ( A V / V  o = 
8% at 40 x 108pa for PbTe). 

The three combinations (Cm + 2C112), (C123 -+- 
2CH2 ) and (C144 + 2C166) of  the third order elastic 
constants (TOEC), which can be determined from the 
hydrostatic pressure derivatives of the second order 
elastic constants, are given in Table IL The values 
show the same trends as the rocksalt structure alkali 
halides and IV-VI compounds (see Table IV of  [4]), 
indicating that for UN, as for the other isostructural 
m a t e r i a l s ,  CI I  , is by far the largest third order elastic 
constant. For  an ionic Born-Mayer  model with inter- 
action potential between ions 

(o.~(r) = ( -  ZZe2/r) + A exp (-- r/o), (7) 
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Figure 2 The isothermal compression of UN computed on the basis 
of the Murnaghan equation-of-state. 

the forces would be central and the third order Cauchy 
relations [13] would be obtained giving 

C123 = C456 = CI44 - 1 0 . 4  x 10' lNm 2 

C l l  2 = C166 ~- - - 4 . 0  x 1011Nm -2 

Although an ionic model cannot hold strictly for UN, 
it gives a useful indication of the relative magnitudes 
of  the third order constants: C ~  would be - 6 4  • 
10 n Nm 2. Including the contributions of repulsive 
terms up to second nearest neighbours, the TOEC C~ 
at OK are [14] 

c O  K 0 0 = (CiJK)attractivc -1- (ClJK)repulsiw e (8 )  

Z2e2 O(rO)(r~ 3 012 ) = _ _  + - - +  
COIl 10.2639 r4 0 0r0 

tp(21;2 r0) F3(2)'/2 6 2(2)'/21 
L r2 + 0r~ + Q2 j (9) 

Z2e 2 ~p(2)l/2ro 
C~ = C~ - 1 . 2 0 8 6 - -  

r 4 40 

[3(2) ~/2 6 2(2) 1/2] 
• L r~ + - -  + (I0) 0ro 02 J 

Z2 e 2 
C~ = C~ = C ~ = 0.6784 r---~-- (11) 

In the case of C~ the second term, due to the nearest- 
neighbour repulsion, is about two orders of magnitude 
greater than the third term, which results from repul- 
sion between next nearest-neighbours, and can be 
neglected. Hence C~H has a large and negative value 
because it is dominated by the nearest-neighbour 
repulsion (this will also be true for the mixed ionic- 
covalent bonding closer to the real situation in UN). 
In the ionic model the nearest-neighbour term does 
not contribute to the other third order elastic con- 
stants, so that these are much smaller than CIH. 

4. Long wavelength acoustic mode 
GriJneisen parameters of UN 

Knowledge of the elastic constants and their hydro- 
static pressure derivatives enables the Griineisen 
gammas 7(P, N) of the acoustic modes in the long 
wavelength limit to be calculated. In the anisotropic 
continuum model the 7(P, N) for cubic crystals are 
given by [15] 

7(P, N) = (1/6w)(3B + 2w + k) (12) 

where 

w(p, N )  = C I I K  1 --1- C 4 4 K  2 Jr- C I 2 K  3 ( 1 3 )  

2 5 7 9  



k(p, N) 

with 

K~ (p, N) 

K2(p, N) 

K~(p, N) 

= C I K  l + C 2 K  2 + C 3 K  3 (14)  

N~U~ + N]U~ + N~U~ (15) 

(NzU3 + N3 U2) 2 + (N3U1 + Nl U3) 2 

+ (N,U: + N2U,) 2 (16) 

2(N2N 3 U 2 U 3 + N3N l U 3 U, 

+ NIN2U , [72) (17) 

C l = C l l  I + 2 C I I  2 (18) 

(72 = G44 + 2C166 (19) 

C 3 = CI2 3 + 2 C l l  2 (20) 

Here Ni and U~ are direction cosines for wave propa- 
gation and polarization directions. The 7(p, N) have 
been computed as a function of mode propagation 
direction, the mode velocities being obtained from 
the solutions plotted in Fig. 1. The acoustic mode 
Griineisen parameters in directions in the symmetry 
planes normal to the twofold and fourfold directions 
are plotted in Fig. 3. These Griineisen parameters 
quantify the first order anharmonicity of the acoustic 
modes at the Brillouin zone centre. The marked ani- 
sotropy of these ?(p, N) can be understood in terms of 
the types of acoustic modes which can propagate in 
the rocksalt structure and their relationship to the 
interionic forces, in particular when nearest-neighbour 
repulsion plays a role. Consider for example the 7(P, 
N) for modes propagating along a four-fold (0 0 1) 
direction. Inspection of the mode gamma equations 
shows that the longitudinal mode ?(p, N) has a com- 
paratively large positive value (+ 2.2) because the third" 
order elastic constant combination ( C l l  1 + 2Ci12)  = 

C l = -72.3 x 10UNm -2 (Table II) is large and 
negative. Hence C1/s = - 72 • 10 I1 Nm- 2 ( K  1 being 
for the longitudinal mode) is much greater than 
w(=C~LKL = +4.239 • 1011Nm-2), and so domi- 
nates ~(p, N). Now (Cm + 2C1~2) is in turn largely 

2 , 5  - -  i i i I 1 i i i 

' ~ [l[]Qfi~[] []f~D 
2.0 []D [ ] [ ]  

[ ]  [ ]  

L [] D x 
1.5 [ ] � 9  

x 
x 

IE x X  

L x X 
1.0 x 

o_ x 
x x 

C x 
x x 

O.S x 
x 

x 
(Z x x 
SJ x 
L 0.0 

XX X 
X 

o -0.s t • x 

-l'0f~ ~ •215215215215215 

-1"5~01] I[(3 ' h h i , i , 
[101] [100] 

Mode p r o p a g a t i o n  d l r e c t l o n  

Figure 3 The acoustic mode  Orfineisen parameter  ~(p, N)  in the 
long wavelength limit as a function of  mode propagation directions 
in UN.  

determined by Cl l  I : the nearest-neighbour repulsion is 
responsible for the substantial value of y(p, N) for the 
longitudinal q[0 0 1] acoustic mode. In contrast Cm is 
not involved in Grfineisen gamma for the shear acoustic 
wave propagated along an (0 0 1 ) direction - for this 
mode the nearest-neighbour forces do not come into 
play. This mode comprises a vibration in which the 
(0 0 1) planes of atoms vibrate almost as a unit perpen- 
dicular to the direction of the nearest-neighbour 
bonds, and since all the changing bond lengths increase, 
the Griineisen parameter is negative (Fig. 3). The 
thermodynamic properties of the crystal at low tem- 
peratures (including the thermal expansion) should be 
determined by the dominance of the phonon popu- 
lation in this transverse low lying branch. In general 
application of the principle that when Cut is involved 
then the nearest-neighbour repulsion will be important 
in determining the vibrational anharmonicity accounts 
for the marked anisotropy of the acoustic mode 
Grtineisen parameter of UN. 

To obtain a mean high temperature acoustic mode 
Grtineisen parameter, the expression 

1 
~ = - - Z ? ( p ,  N) (21) 

3N 

has been summed over a grid of 10288 points in 
velocity space for equal elements of solid angle centred 
on each propagation vector N. At room temperature 
UN nears the high temperature limit (T > 0D = 
282K (Table II)) so Equation 21 is a reasonable 
approximation. The value of ~ (=0.71) obtained 
(Table II) is substantially smaller than the thermal 
Grfineisen parameter yth (= 1.98), which indicates that 
the mean of the Grfineisen parameters for optic mode 
and for acoustic modes away from the Brillouin zone 
centre is much larger than that for the zone centre 
acoustic modes. 
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